在数学中,内乘(interior product,或译内积)是光滑流形上的微分形式外代数上一个次数为 −1 导子,定义为微分形式与一个向量场的缩并。从而如果 X 是流形 M 上一个向量场,那么 是将一个 p-形式 ω 映为 (p−1)-形式 iXω,由性质 所定义,对任何向量场 X1,..., Xp−1。本质上来说,内乘可以定义在向量空间与外代数上,即只与流形的一点有关。 内乘也称为内乘法(interior 或 inner multiplication),或内导数(inner derivative 或 derivation)。 一些作者使用字母 代替 ;内乘有时也写成 或者 。
御马。 明 何景明 《子昂画马歌》:“吁嗟内乘无人识,想见奔腾过都国。”
载请注明:转载自词典网 [https://www.cidian5.com/]