质因数(或称质因子)在数论里是指能整除给定正整数的质数。根据算术基本定理,不考虑排列顺序的情况下,每个正整数都能够以唯一的方式表示成它的质因数的乘积。两个没有共同质因子的正整数称为互质。因为1没有质因子,1与任何正整数(包括1本身)都是互质。只有一个质因子的正整数为质数。 将一个正整数表示成质因数乘积的过程和得到的表示结果叫做质因数分解。显示质因数分解结果时,如果其中某个质因数出现了不止一次,可以用幂次的形式表示。例如360的质因数分解是: 其中的质因数2、3、5在360的质因数分解中的幂次分别是3,2,1。 数论中的不少函数与正整数的质因子有关,比如取值为n的质因数个数的函数和取值为n的质因数之和的函数。它们都是加性函数,但并非完全加性函数。
载请注明:转载自词典网 [https://www.cidian5.com/]